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Figure 4.1 A steel ball bearing illuminated by a laser does not cast a sharp, circular shadow. Instead, a series of diffraction
fringes and a central bright spot are observed. Known as Poisson’s spot, the effect was first predicted by Augustin-Jean Fresnel
(1788–1827) as a consequence of diffraction of light waves. Based on principles of ray optics, Siméon-Denis Poisson
(1781–1840) argued against Fresnel’s prediction. (credit: modification of work by Harvard Natural Science Lecture
Demonstrations)

Chapter Outline

4.1 Single-Slit Diffraction

4.2 Intensity in Single-Slit Diffraction

4.3 Double-Slit Diffraction

4.4 Diffraction Gratings

4.5 Circular Apertures and Resolution

4.6 X-Ray Diffraction

4.7 Holography

Introduction
Imagine passing a monochromatic light beam through a narrow opening—a slit just a little wider than the wavelength of
the light. Instead of a simple shadow of the slit on the screen, you will see that an interference pattern appears, even though
there is only one slit.

In the chapter on interference, we saw that you need two sources of waves for interference to occur. How can there be an
interference pattern when we have only one slit? In The Nature of Light, we learned that, due to Huygens’s principle, we
can imagine a wave front as equivalent to infinitely many point sources of waves. Thus, a wave from a slit can behave not as
one wave but as an infinite number of point sources. These waves can interfere with each other, resulting in an interference
pattern without the presence of a second slit. This phenomenon is called diffraction.

Another way to view this is to recognize that a slit has a small but finite width. In the preceding chapter, we implicitly
regarded slits as objects with positions but no size. The widths of the slits were considered negligible. When the slits have
finite widths, each point along the opening can be considered a point source of light—a foundation of Huygens’s principle.
Because real-world optical instruments must have finite apertures (otherwise, no light can enter), diffraction plays a major
role in the way we interpret the output of these optical instruments. For example, diffraction places limits on our ability to
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resolve images or objects. This is a problem that we will study later in this chapter.

4.1 | Single-Slit Diffraction

Learning Objectives

By the end of this section, you will be able to:

• Explain the phenomenon of diffraction and the conditions under which it is observed

• Describe diffraction through a single slit

After passing through a narrow aperture (opening), a wave propagating in a specific direction tends to spread out. For
example, sound waves that enter a room through an open door can be heard even if the listener is in a part of the room
where the geometry of ray propagation dictates that there should only be silence. Similarly, ocean waves passing through an
opening in a breakwater can spread throughout the bay inside. (Figure 4.2). The spreading and bending of sound and ocean
waves are two examples of diffraction, which is the bending of a wave around the edges of an opening or an obstacle—a
phenomenon exhibited by all types of waves.

Figure 4.2 Because of the diffraction of waves, ocean waves
entering through an opening in a breakwater can spread
throughout the bay. (credit: modification of map data from
Google Earth)

The diffraction of sound waves is apparent to us because wavelengths in the audible region are approximately the same
size as the objects they encounter, a condition that must be satisfied if diffraction effects are to be observed easily. Since
the wavelengths of visible light range from approximately 390 to 770 nm, most objects do not diffract light significantly.
However, situations do occur in which apertures are small enough that the diffraction of light is observable. For example,
if you place your middle and index fingers close together and look through the opening at a light bulb, you can see a rather
clear diffraction pattern, consisting of light and dark lines running parallel to your fingers.

Diffraction through a Single Slit
Light passing through a single slit forms a diffraction pattern somewhat different from those formed by double slits or
diffraction gratings, which we discussed in the chapter on interference. Figure 4.3 shows a single-slit diffraction pattern.
Note that the central maximum is larger than maxima on either side and that the intensity decreases rapidly on either side.
In contrast, a diffraction grating (Diffraction Gratings) produces evenly spaced lines that dim slowly on either side of the
center.
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Figure 4.3 Single-slit diffraction pattern. (a) Monochromatic
light passing through a single slit has a central maximum and
many smaller and dimmer maxima on either side. The central
maximum is six times higher than shown. (b) The diagram
shows the bright central maximum, and the dimmer and thinner
maxima on either side.

The analysis of single-slit diffraction is illustrated in Figure 4.4. Here, the light arrives at the slit, illuminating it uniformly
and is in phase across its width. We then consider light propagating onwards from different parts of the same slit. According
to Huygens’s principle, every part of the wave front in the slit emits wavelets, as we discussed in The Nature of Light.
These are like rays that start out in phase and head in all directions. (Each ray is perpendicular to the wave front of
a wavelet.) Assuming the screen is very far away compared with the size of the slit, rays heading toward a common
destination are nearly parallel. When they travel straight ahead, as in part (a) of the figure, they remain in phase, and we
observe a central maximum. However, when rays travel at an angle θ relative to the original direction of the beam, each ray

travels a different distance to a common location, and they can arrive in or out of phase. In part (b), the ray from the bottom
travels a distance of one wavelength λ farther than the ray from the top. Thus, a ray from the center travels a distance

λ/2 less than the one at the bottom edge of the slit, arrives out of phase, and interferes destructively. A ray from slightly

above the center and one from slightly above the bottom also cancel one another. In fact, each ray from the slit interferes
destructively with another ray. In other words, a pair-wise cancellation of all rays results in a dark minimum in intensity at
this angle. By symmetry, another minimum occurs at the same angle to the right of the incident direction (toward the bottom
of the figure) of the light.

Chapter 4 | Diffraction 147



Figure 4.4 Light passing through a single slit is diffracted in all directions and may interfere constructively or destructively,
depending on the angle. The difference in path length for rays from either side of the slit is seen to be D sin θ .

At the larger angle shown in part (c), the path lengths differ by 3λ/2 for rays from the top and bottom of the slit. One

ray travels a distance λ different from the ray from the bottom and arrives in phase, interfering constructively. Two rays,

each from slightly above those two, also add constructively. Most rays from the slit have another ray to interfere with
constructively, and a maximum in intensity occurs at this angle. However, not all rays interfere constructively for this
situation, so the maximum is not as intense as the central maximum. Finally, in part (d), the angle shown is large enough to
produce a second minimum. As seen in the figure, the difference in path length for rays from either side of the slit is D sin
θ , and we see that a destructive minimum is obtained when this distance is an integral multiple of the wavelength.

Thus, to obtain destructive interference for a single slit,

(4.1)D sin θ = mλ, for m = ± 1, ± 2, ± 3, ...(destructive),

where D is the slit width, λ is the light’s wavelength, θ is the angle relative to the original direction of the light, and m

is the order of the minimum. Figure 4.5 shows a graph of intensity for single-slit interference, and it is apparent that the
maxima on either side of the central maximum are much less intense and not as wide. This effect is explored in Double-
Slit Diffraction.
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Figure 4.5 A graph of single-slit diffraction intensity showing
the central maximum to be wider and much more intense than
those to the sides. In fact, the central maximum is six times
higher than shown here.

Example 4.1

Calculating Single-Slit Diffraction

Visible light of wavelength 550 nm falls on a single slit and produces its second diffraction minimum at an angle
of 45.0° relative to the incident direction of the light, as in Figure 4.6. (a) What is the width of the slit? (b) At

what angle is the first minimum produced?

Figure 4.6 In this example, we analyze a graph of the single-
slit diffraction pattern.

Strategy

From the given information, and assuming the screen is far away from the slit, we can use the equation
D sin θ = mλ first to find D, and again to find the angle for the first minimum θ1.
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Solution
a. We are given that λ = 550 nm , m = 2 , and θ2 = 45.0° . Solving the equation D sin θ = mλ for D and

substituting known values gives

D = mλ
sin θ2

= 2(550 nm)
sin 45.0° = 1100 × 10−9 m

0.707 = 1.56 × 10−6 m.

b. Solving the equation D sin θ = mλ for sin θ1 and substituting the known values gives

sin θ1 = mλ
D = 1(550 × 10−9 m)

1.56 × 10−6 m
.

Thus the angle θ1 is

θ1 = sin−1 0.354 = 20.7°.

Significance

We see that the slit is narrow (it is only a few times greater than the wavelength of light). This is consistent with
the fact that light must interact with an object comparable in size to its wavelength in order to exhibit significant
wave effects such as this single-slit diffraction pattern. We also see that the central maximum extends 20.7° on

either side of the original beam, for a width of about 41° . The angle between the first and second minima is only

about 24° (45.0° − 20.7°) . Thus, the second maximum is only about half as wide as the central maximum.

Check Your Understanding Suppose the slit width in Example 4.1 is increased to 1.8 × 10−6 m.
What are the new angular positions for the first, second, and third minima? Would a fourth minimum exist?

4.2 | Intensity in Single-Slit Diffraction

Learning Objectives

By the end of this section, you will be able to:

• Calculate the intensity relative to the central maximum of the single-slit diffraction peaks

• Calculate the intensity relative to the central maximum of an arbitrary point on the screen

To calculate the intensity of the diffraction pattern, we follow the phasor method used for calculations with ac circuits in
Alternating-Current Circuits (http://cnx.org/content/m58485/latest/) . If we consider that there are N Huygens
sources across the slit shown in Figure 4.4, with each source separated by a distance D/N from its adjacent neighbors,
the path difference between waves from adjacent sources reaching the arbitrary point P on the screen is (D/N) sin θ. This

distance is equivalent to a phase difference of (2πD/λN) sin θ. The phasor diagram for the waves arriving at the point

whose angular position is θ is shown in Figure 4.7. The amplitude of the phasor for each Huygens wavelet is ΔE0, the

amplitude of the resultant phasor is E, and the phase difference between the wavelets from the first and the last sources is

ϕ = ⎛
⎝
2π
λ

⎞
⎠D sin θ.

With N → ∞ , the phasor diagram approaches a circular arc of length NΔE0 and radius r. Since the length of the arc

is NΔE0 for any ϕ , the radius r of the arc must decrease as ϕ increases (or equivalently, as the phasors form tighter

spirals).
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Figure 4.7 (a) Phasor diagram corresponding to the angular
position θ in the single-slit diffraction pattern. The phase

difference between the wavelets from the first and last sources is
ϕ = (2π/λ)D sin θ . (b) The geometry of the phasor diagram.

The phasor diagram for ϕ = 0 (the center of the diffraction pattern) is shown in Figure 4.8(a) using N = 30 . In this

case, the phasors are laid end to end in a straight line of length NΔE0, the radius r goes to infinity, and the resultant

has its maximum value E = NΔE0. The intensity of the light can be obtained using the relation I = 1
2cε0 E2 from

Electromagnetic Waves (http://cnx.org/content/m58495/latest/) . The intensity of the maximum is then

I0 = 1
2cε0 (NΔE0)2 = 1

2µ0 c
⎛
⎝NΔE0

⎞
⎠
2,

where ε0 = 1/µ0 c2 . The phasor diagrams for the first two zeros of the diffraction pattern are shown in parts (b) and (d) of

the figure. In both cases, the phasors add to zero, after rotating through ϕ = 2π rad for m = 1 and 4π rad for m = 2 .

Figure 4.8 Phasor diagrams (with 30 phasors) for various points on the single-slit diffraction
pattern. Multiple rotations around a given circle have been separated slightly so that the phasors can
be seen. (a) Central maximum, (b) first minimum, (c) first maximum beyond central maximum, (d)
second minimum, and (e) second maximum beyond central maximum.

The next two maxima beyond the central maxima are represented by the phasor diagrams of parts (c) and (e). In part (c),
the phasors have rotated through ϕ = 3π rad and have formed a resultant phasor of magnitude E1 . The length of the arc

formed by the phasors is NΔE0. Since this corresponds to 1.5 rotations around a circle of diameter E1 , we have

3
2πE1 ≈ NΔE0,

Chapter 4 | Diffraction 151

http://cnx.org/content/m58495/latest/


so

E1 = 2NΔE0
3π

and

I1 = 1
2µ0 cE1

2 = 4(NΔE0)2

⎛
⎝9π2⎞

⎠
⎛
⎝2µ0 c⎞

⎠

≈ 0.045I0,

where

I0 = (NΔE0)2

2µ0 c .

In part (e), the phasors have rotated through ϕ = 5π rad, corresponding to 2.5 rotations around a circle of diameter E2

and arc length NΔE0. This results in I2 ≈ 0.016I0 . The proof is left as an exercise for the student (Exercise 4.119).

These two maxima actually correspond to values of ϕ slightly less than 3π rad and 5π rad. Since the total length of the

arc of the phasor diagram is always NΔE0, the radius of the arc decreases as ϕ increases. As a result, E1 and E2 turn

out to be slightly larger for arcs that have not quite curled through 3π rad and 5π rad, respectively. The exact values of ϕ
for the maxima are investigated in Exercise 4.120. In solving that problem, you will find that they are less than, but very
close to, ϕ = 3π, 5π, 7π, … rad.

To calculate the intensity at an arbitrary point P on the screen, we return to the phasor diagram of Figure 4.7. Since the arc
subtends an angle ϕ at the center of the circle,

NΔE0 = rϕ

and

sin ⎛
⎝
ϕ
2

⎞
⎠ = E

2r .

where E is the amplitude of the resultant field. Solving the second equation for E and then substituting r from the first
equation, we find

E = 2r sin ϕ
2 = 2NΔEo

ϕ sin ϕ
2 .

Now defining

(4.2)β = ϕ
2 = πD sin θ

λ

we obtain

(4.3)E = NΔE0
sin β

β

This equation relates the amplitude of the resultant field at any point in the diffraction pattern to the amplitude NΔE0 at

the central maximum. The intensity is proportional to the square of the amplitude, so
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(4.4)
I = I0

⎛
⎝
sin β

β
⎞
⎠

2

where I0 = ⎛
⎝NΔE0

⎞
⎠
2/2µ0 c is the intensity at the center of the pattern.

For the central maximum, ϕ = 0 , β is also zero and we see from l’Hôpital’s rule that limβ → 0
⎛
⎝sin β/β⎞

⎠ = 1, so that

limϕ → 0 I = I0. For the next maximum, ϕ = 3π rad, we have β = 3π/2 rad and when substituted into Equation 4.4,

it yields

I1 = I0
⎛
⎝
sin 3π/2

3π/2
⎞
⎠

2
≈ 0.045I0,

in agreement with what we found earlier in this section using the diameters and circumferences of phasor diagrams.
Substituting ϕ = 5π rad into Equation 4.4 yields a similar result for I2 .

A plot of Equation 4.4 is shown in Figure 4.9 and directly below it is a photograph of an actual diffraction pattern.
Notice that the central peak is much brighter than the others, and that the zeros of the pattern are located at those points
where sin β = 0, which occurs when β = mπ rad. This corresponds to

πD sin θ
λ = mπ,

or

D sin θ = mλ,

which is Equation 4.1.

Figure 4.9 (a) The calculated intensity distribution of a single-slit diffraction pattern. (b) The
actual diffraction pattern.
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4.2

Example 4.2

Intensity in Single-Slit Diffraction

Light of wavelength 550 nm passes through a slit of width 2.00 µm and produces a diffraction pattern similar

to that shown in Figure 4.9. (a) Find the locations of the first two minima in terms of the angle from the central
maximum and (b) determine the intensity relative to the central maximum at a point halfway between these two
minima.

Strategy

The minima are given by Equation 4.1, D sin θ = mλ . The first two minima are for m = 1 and m = 2.
Equation 4.4 and Equation 4.2 can be used to determine the intensity once the angle has been worked out.

Solution

a. Solving Equation 4.1 for θ gives us θm = sin−1(mλ/D), so that

θ1 = sin−1
⎛

⎝
⎜
(+1)⎛

⎝550 × 10−9 m⎞
⎠

2.00 × 10−6 m

⎞

⎠
⎟ = + 16.0°

and

θ2 = sin−1
⎛

⎝
⎜
(+2)⎛

⎝550 × 10−9 m⎞
⎠

2.00 × 10−6 m

⎞

⎠
⎟ = + 33.4°.

b. The halfway point between θ1 and θ2 is

θ = ⎛
⎝θ1 + θ2

⎞
⎠/2 = (16.0° + 33.4°)/2 = 24.7°.

Equation 4.2 gives

β = πD sin θ
λ =

π⎛
⎝2.00 × 10−6 m⎞

⎠ sin(24.7°)
⎛
⎝550 × 10−9 m⎞

⎠
= 1.52π or 4.77 rad.

From Equation 4.4, we can calculate

I
Io

= ⎛
⎝
sin β

β
⎞
⎠

2
= ⎛

⎝
sin (4.77)

4.77
⎞
⎠

2
= ⎛

⎝
−0.9985

4.77
⎞
⎠

2
= 0.044.

Significance

This position, halfway between two minima, is very close to the location of the maximum, expected near
β = 3π/2, or 1.5π .

Check Your Understanding For the experiment in Example 4.2, at what angle from the center is the
third maximum and what is its intensity relative to the central maximum?

If the slit width D is varied, the intensity distribution changes, as illustrated in Figure 4.10. The central peak is distributed
over the region from sin θ = −λ/D to sin θ = + λ/D . For small θ , this corresponds to an angular width Δθ ≈ 2λ/D.
Hence, an increase in the slit width results in a decrease in the width of the central peak. For a slit with D ≫ λ, the

central peak is very sharp, whereas if D ≈ λ , it becomes quite broad.
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Figure 4.10 Single-slit diffraction patterns for various slit widths. As the slit width D increases from D = λ to 5λ and then to

10λ , the width of the central peak decreases as the angles for the first minima decrease as predicted by Equation 4.1.

A diffraction experiment in optics can require a lot of preparation but this simulation
(https://openstaxcollege.org/l/21diffrexpoptsi) by Andrew Duffy offers not only a quick set up but also the
ability to change the slit width instantly. Run the simulation and select “Single slit.” You can adjust the slit width
and see the effect on the diffraction pattern on a screen and as a graph.

4.3 | Double-Slit Diffraction

Learning Objectives

By the end of this section, you will be able to:

• Describe the combined effect of interference and diffraction with two slits, each with finite width

• Determine the relative intensities of interference fringes within a diffraction pattern

• Identify missing orders, if any

When we studied interference in Young’s double-slit experiment, we ignored the diffraction effect in each slit. We assumed
that the slits were so narrow that on the screen you saw only the interference of light from just two point sources. If the slit
is smaller than the wavelength, then Figure 4.10(a) shows that there is just a spreading of light and no peaks or troughs
on the screen. Therefore, it was reasonable to leave out the diffraction effect in that chapter. However, if you make the slit
wider, Figure 4.10(b) and (c) show that you cannot ignore diffraction. In this section, we study the complications to the
double-slit experiment that arise when you also need to take into account the diffraction effect of each slit.

To calculate the diffraction pattern for two (or any number of) slits, we need to generalize the method we just used for a
single slit. That is, across each slit, we place a uniform distribution of point sources that radiate Huygens wavelets, and
then we sum the wavelets from all the slits. This gives the intensity at any point on the screen. Although the details of that
calculation can be complicated, the final result is quite simple:

Two-Slit Diffraction Pattern

The diffraction pattern of two slits of width D that are separated by a distance d is the interference pattern of two point
sources separated by d multiplied by the diffraction pattern of a slit of width D.

In other words, the locations of the interference fringes are given by the equation d sin θ = mλ , the same as when we

considered the slits to be point sources, but the intensities of the fringes are now reduced by diffraction effects, according
to Equation 4.4. [Note that in the chapter on interference, we wrote d sin θ = mλ and used the integer m to refer to

interference fringes. Equation 4.1 also uses m, but this time to refer to diffraction minima. If both equations are used
simultaneously, it is good practice to use a different variable (such as n) for one of these integers in order to keep them
distinct.]

Interference and diffraction effects operate simultaneously and generally produce minima at different angles. This gives rise
to a complicated pattern on the screen, in which some of the maxima of interference from the two slits are missing if the
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maximum of the interference is in the same direction as the minimum of the diffraction. We refer to such a missing peak as
a missing order. One example of a diffraction pattern on the screen is shown in Figure 4.11. The solid line with multiple
peaks of various heights is the intensity observed on the screen. It is a product of the interference pattern of waves from
separate slits and the diffraction of waves from within one slit.

Figure 4.11 Diffraction from a double slit. The purple line with peaks of the same height are
from the interference of the waves from two slits; the blue line with one big hump in the middle
is the diffraction of waves from within one slit; and the thick red line is the product of the two,
which is the pattern observed on the screen. The plot shows the expected result for a slit width
D = 2λ and slit separation d = 6λ . The maximum of m = ± 3 order for the interference is

missing because the minimum of the diffraction occurs in the same direction.

Example 4.3

Intensity of the Fringes

Figure 4.11 shows that the intensity of the fringe for m = 3 is zero, but what about the other fringes? Calculate

the intensity for the fringe at m = 1 relative to I0, the intensity of the central peak.

Strategy

Determine the angle for the double-slit interference fringe, using the equation from Interference, then determine
the relative intensity in that direction due to diffraction by using Equation 4.4.

Solution

From the chapter on interference, we know that the bright interference fringes occur at d sin θ = mλ , or

sin θ = mλ
d .

From Equation 4.4,

I = I0
⎛
⎝
sin β

β
⎞
⎠

2
, where β = ϕ

2 = πD sin θ
λ .

Substituting from above,

β = πD sin θ
λ = πD

λ · mλ
d = mπD

d .

For D = 2λ , d = 6λ , and m = 1 ,

β = (1)π(2λ)
(6λ) = π

3.
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4.3

Then, the intensity is

I = I0
⎛
⎝
sin β

β
⎞
⎠

2
= I0

⎛
⎝
sin (π/3)

π/3
⎞
⎠

2
= 0.684I0.

Significance

Note that this approach is relatively straightforward and gives a result that is almost exactly the same as the more
complicated analysis using phasors to work out the intensity values of the double-slit interference (thin line in
Figure 4.11). The phasor approach accounts for the downward slope in the diffraction intensity (blue line) so
that the peak near m = 1 occurs at a value of θ ever so slightly smaller than we have shown here.

Example 4.4

Two-Slit Diffraction

Suppose that in Young’s experiment, slits of width 0.020 mm are separated by 0.20 mm. If the slits are illuminated
by monochromatic light of wavelength 500 nm, how many bright fringes are observed in the central peak of the
diffraction pattern?

Solution

From Equation 4.1, the angular position of the first diffraction minimum is

θ ≈ sin θ = λ
D = 5.0 × 10−7 m

2.0 × 10−5 m
= 2.5 × 10−2 rad.

Using sin θ = mλ for θ = 2.5 × 10−2 rad , we find

m = d sin θ
λ =

(0.20 mm)⎛
⎝2.5 × 10−2 rad⎞

⎠
⎛
⎝5.0 × 10−7 m⎞

⎠
= 10,

which is the maximum interference order that fits inside the central peak. We note that m = ± 10 are missing

orders as θ matches exactly. Accordingly, we observe bright fringes for

m = −9, −8, −7, −6, −5, −4, −3, −2, −1, 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, and + 9

for a total of 19 bright fringes.

Check Your Understanding For the experiment in Example 4.4, show that m = 20 is also a missing

order.

Explore the effects of double-slit diffraction. In this simulation (https://openstaxcollege.org/l/
21doubslitdiff) written by Fu-Kwun Hwang, select N = 2 using the slider and see what happens when you

control the slit width, slit separation and the wavelength. Can you make an order go “missing?”

4.4 | Diffraction Gratings

Learning Objectives

By the end of this section, you will be able to:

• Discuss the pattern obtained from diffraction gratings

• Explain diffraction grating effects
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Analyzing the interference of light passing through two slits lays out the theoretical framework of interference and gives us
a historical insight into Thomas Young’s experiments. However, most modern-day applications of slit interference use not
just two slits but many, approaching infinity for practical purposes. The key optical element is called a diffraction grating,
an important tool in optical analysis.

Diffraction Gratings: An Infinite Number of Slits
The analysis of multi-slit interference in Interference allows us to consider what happens when the number of slits N
approaches infinity. Recall that N – 2 secondary maxima appear between the principal maxima. We can see there will be

an infinite number of secondary maxima that appear, and an infinite number of dark fringes between them. This makes
the spacing between the fringes, and therefore the width of the maxima, infinitesimally small. Furthermore, because the

intensity of the secondary maxima is proportional to 1/N 2 , it approaches zero so that the secondary maxima are no longer

seen. What remains are only the principal maxima, now very bright and very narrow (Figure 4.12).

Figure 4.12 (a) Intensity of light transmitted through a large number of slits. When N
approaches infinity, only the principal maxima remain as very bright and very narrow lines. (b)
A laser beam passed through a diffraction grating. (credit b: modification of work by Sebastian
Stapelberg)

In reality, the number of slits is not infinite, but it can be very large—large enough to produce the equivalent effect. A prime
example is an optical element called a diffraction grating. A diffraction grating can be manufactured by carving glass
with a sharp tool in a large number of precisely positioned parallel lines, with untouched regions acting like slits (Figure
4.13). This type of grating can be photographically mass produced rather cheaply. Because there can be over 1000 lines per
millimeter across the grating, when a section as small as a few millimeters is illuminated by an incoming ray, the number of
illuminated slits is effectively infinite, providing for very sharp principal maxima.
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Figure 4.13 A diffraction grating can be manufactured by carving glass with a
sharp tool in a large number of precisely positioned parallel lines.

Diffraction gratings work both for transmission of light, as in Figure 4.14, and for reflection of light, as on butterfly wings
and the Australian opal in Figure 4.15. Natural diffraction gratings also occur in the feathers of certain birds such as the
hummingbird. Tiny, finger-like structures in regular patterns act as reflection gratings, producing constructive interference
that gives the feathers colors not solely due to their pigmentation. This is called iridescence.

Figure 4.14 (a) Light passing through a diffraction grating is
diffracted in a pattern similar to a double slit, with bright regions
at various angles. (b) The pattern obtained for white light incident
on a grating. The central maximum is white, and the higher-order
maxima disperse white light into a rainbow of colors.
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Figure 4.15 (a) This Australian opal and (b) butterfly wings have rows of
reflectors that act like reflection gratings, reflecting different colors at different
angles. (credit a: modification of work by "Opals-On-Black"/Flickr; credit b:
modification of work by “whologwhy”/Flickr)

Applications of Diffraction Gratings
Where are diffraction gratings used in applications? Diffraction gratings are commonly used for spectroscopic dispersion
and analysis of light. What makes them particularly useful is the fact that they form a sharper pattern than double slits
do. That is, their bright fringes are narrower and brighter while their dark regions are darker. Diffraction gratings are key
components of monochromators used, for example, in optical imaging of particular wavelengths from biological or medical
samples. A diffraction grating can be chosen to specifically analyze a wavelength emitted by molecules in diseased cells in
a biopsy sample or to help excite strategic molecules in the sample with a selected wavelength of light. Another vital use is
in optical fiber technologies where fibers are designed to provide optimum performance at specific wavelengths. A range of
diffraction gratings are available for selecting wavelengths for such use.

Example 4.5

Calculating Typical Diffraction Grating Effects

Diffraction gratings with 10,000 lines per centimeter are readily available. Suppose you have one, and you send
a beam of white light through it to a screen 2.00 m away. (a) Find the angles for the first-order diffraction of the
shortest and longest wavelengths of visible light (380 and 760 nm, respectively). (b) What is the distance between
the ends of the rainbow of visible light produced on the screen for first-order interference? (See Figure 4.16.)
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Figure 4.16 (a) The diffraction grating considered in this
example produces a rainbow of colors on a screen a distance
x = 2.00 m from the grating. The distances along the screen

are measured perpendicular to the x-direction. In other words,
the rainbow pattern extends out of the page.
(b) In a bird’s-eye view, the rainbow pattern can be seen on a
table where the equipment is placed.

Strategy

Once a value for the diffraction grating’s slit spacing d has been determined, the angles for the sharp lines can be
found using the equation

d sin θ = mλ for m = 0, ± 1, ± 2, ... .

Since there are 10,000 lines per centimeter, each line is separated by 1/10,000 of a centimeter. Once we know the
angles, we an find the distances along the screen by using simple trigonometry.

Solution

a. The distance between slits is d = (1 cm)/10, 000 = 1.00 × 10−4 cm or 1.00 × 10−6 m. Let us call

the two angles θV for violet (380 nm) and θR for red (760 nm). Solving the equation

d sin θV = mλ for sin θV,

sin θV = mλV
d ,

where m = 1 for the first-order and λV = 380 nm = 3.80 × 10−7 m. Substituting these values gives

sin θV = 3.80 × 10−7 m
1.00 × 10−6 m

= 0.380.

Thus the angle θV is

θV = sin−1 0.380 = 22.33°.
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Similarly,

sin θR = 7.60 × 10−7 m
1.00 × 10−6 m

= 0.760.

Thus the angle θR is

θR = sin−1 0.760 = 49.46°.

Notice that in both equations, we reported the results of these intermediate calculations to four significant
figures to use with the calculation in part (b).

b. The distances on the secreen are labeled yV and yR in Figure 4.16. Notice that tan θ = y/x. We can

solve for yV and yR. That is,

yV = x tan θV = (2.00 m)(tan 22.33°) = 0.815 m

and

yR = x tan θR = (2.00 m)(tan 49.46°) = 2.338 m.

The distance between them is therefore

yR − yV = 1.523 m.

Significance

The large distance between the red and violet ends of the rainbow produced from the white light indicates the
potential this diffraction grating has as a spectroscopic tool. The more it can spread out the wavelengths (greater
dispersion), the more detail can be seen in a spectrum. This depends on the quality of the diffraction grating—it
must be very precisely made in addition to having closely spaced lines.

Check Your Understanding If the line spacing of a diffraction grating d is not precisely known, we can
use a light source with a well-determined wavelength to measure it. Suppose the first-order constructive fringe
of the Hβ emission line of hydrogen (λ = 656.3 nm) is measured at 11.36° using a spectrometer with a

diffraction grating. What is the line spacing of this grating?

Take the same simulation (https://openstaxcollege.org/l/21doubslitdiff) we used for double-slit
diffraction and try increasing the number of slits from N = 2 to N = 3, 4, 5... . The primary peaks become

sharper, and the secondary peaks become less and less pronounced. By the time you reach the maximum number
of N = 20 , the system is behaving much like a diffraction grating.

4.5 | Circular Apertures and Resolution

Learning Objectives

By the end of this section, you will be able to:

• Describe the diffraction limit on resolution

• Describe the diffraction limit on beam propagation

Light diffracts as it moves through space, bending around obstacles, interfering constructively and destructively. This can
be used as a spectroscopic tool—a diffraction grating disperses light according to wavelength, for example, and is used to
produce spectra—but diffraction also limits the detail we can obtain in images.
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Figure 4.17(a) shows the effect of passing light through a small circular aperture. Instead of a bright spot with sharp edges,
we obtain a spot with a fuzzy edge surrounded by circles of light. This pattern is caused by diffraction, similar to that
produced by a single slit. Light from different parts of the circular aperture interferes constructively and destructively. The
effect is most noticeable when the aperture is small, but the effect is there for large apertures as well.

Figure 4.17 (a) Monochromatic light passed through a small circular aperture produces this
diffraction pattern. (b) Two point-light sources that are close to one another produce overlapping images
because of diffraction. (c) If the sources are closer together, they cannot be distinguished or resolved.

How does diffraction affect the detail that can be observed when light passes through an aperture? Figure 4.17(b) shows
the diffraction pattern produced by two point-light sources that are close to one another. The pattern is similar to that for a
single point source, and it is still possible to tell that there are two light sources rather than one. If they are closer together,
as in Figure 4.17(c), we cannot distinguish them, thus limiting the detail or resolution we can obtain. This limit is an
inescapable consequence of the wave nature of light.

Diffraction limits the resolution in many situations. The acuity of our vision is limited because light passes through the
pupil, which is the circular aperture of the eye. Be aware that the diffraction-like spreading of light is due to the limited
diameter of a light beam, not the interaction with an aperture. Thus, light passing through a lens with a diameter D shows
this effect and spreads, blurring the image, just as light passing through an aperture of diameter D does. Thus, diffraction
limits the resolution of any system having a lens or mirror. Telescopes are also limited by diffraction, because of the finite
diameter D of the primary mirror.

Just what is the limit? To answer that question, consider the diffraction pattern for a circular aperture, which has a central
maximum that is wider and brighter than the maxima surrounding it (similar to a slit) (Figure 4.18(a)). It can be shown
that, for a circular aperture of diameter D, the first minimum in the diffraction pattern occurs at θ = 1.22λ/D (providing

the aperture is large compared with the wavelength of light, which is the case for most optical instruments). The accepted
criterion for determining the diffraction limit to resolution based on this angle is known as the Rayleigh criterion, which
was developed by Lord Rayleigh in the nineteenth century.

Rayleigh Criterion

The diffraction limit to resolution states that two images are just resolvable when the center of the diffraction pattern
of one is directly over the first minimum of the diffraction pattern of the other (Figure 4.18(b)).

The first minimum is at an angle of θ = 1.22λ/D , so that two point objects are just resolvable if they are separated by the

angle

(4.5)θ = 1.22 λ
D

where λ is the wavelength of light (or other electromagnetic radiation) and D is the diameter of the aperture, lens, mirror,

etc., with which the two objects are observed. In this expression, θ has units of radians. This angle is also commonly known

as the diffraction limit.
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Figure 4.18 (a) Graph of intensity of the diffraction pattern for a circular aperture. Note
that, similar to a single slit, the central maximum is wider and brighter than those to the sides.
(b) Two point objects produce overlapping diffraction patterns. Shown here is the Rayleigh
criterion for being just resolvable. The central maximum of one pattern lies on the first
minimum of the other.

All attempts to observe the size and shape of objects are limited by the wavelength of the probe. Even the small wavelength
of light prohibits exact precision. When extremely small wavelength probes are used, as with an electron microscope, the
system is disturbed, still limiting our knowledge. Heisenberg’s uncertainty principle asserts that this limit is fundamental
and inescapable, as we shall see in the chapter on quantum mechanics.

Example 4.6

Calculating Diffraction Limits of the Hubble Space Telescope

The primary mirror of the orbiting Hubble Space Telescope has a diameter of 2.40 m. Being in orbit, this telescope
avoids the degrading effects of atmospheric distortion on its resolution. (a) What is the angle between two just-
resolvable point light sources (perhaps two stars)? Assume an average light wavelength of 550 nm. (b) If these
two stars are at a distance of 2 million light-years, which is the distance of the Andromeda Galaxy, how close
together can they be and still be resolved? (A light-year, or ly, is the distance light travels in 1 year.)

Strategy

The Rayleigh criterion stated in Equation 4.5, θ = 1.22λ/D , gives the smallest possible angle θ between point

sources, or the best obtainable resolution. Once this angle is known, we can calculate the distance between the
stars, since we are given how far away they are.

Solution
a. The Rayleigh criterion for the minimum resolvable angle is

θ = 1.22 λ
D.

Entering known values gives

θ = 1.22550 × 10−9 m
2.40 m = 2.80 × 10−7 rad.

b. The distance s between two objects a distance r away and separated by an angle θ is s = rθ.

164 Chapter 4 | Diffraction

This OpenStax book is available for free at http://cnx.org/content/col12067/1.9



Substituting known values gives

s = ⎛
⎝2.0 × 106 ly⎞

⎠
⎛
⎝2.80 × 10−7 rad⎞

⎠ = 0.56 ly.

Significance

The angle found in part (a) is extraordinarily small (less than 1/50,000 of a degree), because the primary mirror
is so large compared with the wavelength of light. As noticed, diffraction effects are most noticeable when light
interacts with objects having sizes on the order of the wavelength of light. However, the effect is still there, and
there is a diffraction limit to what is observable. The actual resolution of the Hubble Telescope is not quite as
good as that found here. As with all instruments, there are other effects, such as nonuniformities in mirrors or
aberrations in lenses that further limit resolution. However, Figure 4.19 gives an indication of the extent of
the detail observable with the Hubble because of its size and quality, and especially because it is above Earth’s
atmosphere.

Figure 4.19 These two photographs of the M82 Galaxy give an idea of the
observable detail using (a) a ground-based telescope and (b) the Hubble Space
Telescope. (credit a: modification of work by “Ricnun”/Wikimedia Commons; credit
b: modification of work by NASA, ESA, and The Hubble Heritage Team (STScI/
AURA))

The answer in part (b) indicates that two stars separated by about half a light-year can be resolved. The average
distance between stars in a galaxy is on the order of five light-years in the outer parts and about one light-year
near the galactic center. Therefore, the Hubble can resolve most of the individual stars in Andromeda Galaxy,
even though it lies at such a huge distance that its light takes 2 million years to reach us. Figure 4.20 shows
another mirror used to observe radio waves from outer space.
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Figure 4.20 A 305-m-diameter paraboloid at Arecibo in
Puerto Rico is lined with reflective material, making it into a
radio telescope. It is the largest curved focusing dish in the
world. Although D for Arecibo is much larger than for the
Hubble Telescope, it detects radiation of a much longer
wavelength and its diffraction limit is significantly poorer than
Hubble’s. The Arecibo telescope is still very useful, because
important information is carried by radio waves that is not
carried by visible light. (credit: Jeff Hitchcock)

Check Your Understanding What is the angular resolution of the Arecibo telescope shown in Figure
4.20 when operated at 21-cm wavelength? How does it compare to the resolution of the Hubble Telescope?

Diffraction is not only a problem for optical instruments but also for the electromagnetic radiation itself. Any beam of light
having a finite diameter D and a wavelength λ exhibits diffraction spreading. The beam spreads out with an angle θ given

by Equation 4.5, θ = 1.22λ/D . Take, for example, a laser beam made of rays as parallel as possible (angles between rays

as close to θ = 0° as possible) instead spreads out at an angle θ = 1.22λ/D , where D is the diameter of the beam and

λ is its wavelength. This spreading is impossible to observe for a flashlight because its beam is not very parallel to start

with. However, for long-distance transmission of laser beams or microwave signals, diffraction spreading can be significant
(Figure 4.21). To avoid this, we can increase D. This is done for laser light sent to the moon to measure its distance from
Earth. The laser beam is expanded through a telescope to make D much larger and θ smaller.

Figure 4.21 The beam produced by this microwave
transmission antenna spreads out at a minimum angle
θ = 1.22λ/D due to diffraction. It is impossible to produce a

near-parallel beam because the beam has a limited diameter.
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In most biology laboratories, resolution is an issue when the use of the microscope is introduced. The smaller the distance x
by which two objects can be separated and still be seen as distinct, the greater the resolution. The resolving power of a lens
is defined as that distance x. An expression for resolving power is obtained from the Rayleigh criterion. Figure 4.22(a)
shows two point objects separated by a distance x. According to the Rayleigh criterion, resolution is possible when the
minimum angular separation is

θ = 1.22 λ
D = x

d ,

where d is the distance between the specimen and the objective lens, and we have used the small angle approximation (i.e.,
we have assumed that x is much smaller than d), so that tan θ ≈ sin θ ≈ θ. Therefore, the resolving power is

x = 1.22λd
D .

Another way to look at this is by the concept of numerical aperture (NA), which is a measure of the maximum acceptance
angle at which a lens will take light and still contain it within the lens. Figure 4.22(b) shows a lens and an object at point
P. The NA here is a measure of the ability of the lens to gather light and resolve fine detail. The angle subtended by the lens
at its focus is defined to be θ = 2α . From the figure and again using the small angle approximation, we can write

sin α = D/2
d = D

2d .

The NA for a lens is NA = n sin α , where n is the index of refraction of the medium between the objective lens and the

object at point P. From this definition for NA, we can see that

x = 1.22λd
D = 1.22 λ

2 sin α = 0.61 λn
NA.

In a microscope, NA is important because it relates to the resolving power of a lens. A lens with a large NA is able to resolve
finer details. Lenses with larger NA are also able to collect more light and so give a brighter image. Another way to describe
this situation is that the larger the NA, the larger the cone of light that can be brought into the lens, so more of the diffraction
modes are collected. Thus the microscope has more information to form a clear image, and its resolving power is higher.

Figure 4.22 (a) Two points separated by a distance x and positioned a
distance d away from the objective. (b) Terms and symbols used in
discussion of resolving power for a lens and an object at point P (credit a:
modification of work by “Infopro”/Wikimedia Commons).

One of the consequences of diffraction is that the focal point of a beam has a finite width and intensity distribution. Imagine
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focusing when only considering geometric optics, as in Figure 4.23(a). The focal point is regarded as an infinitely small
point with a huge intensity and the capacity to incinerate most samples, irrespective of the NA of the objective lens—an
unphysical oversimplification. For wave optics, due to diffraction, we take into account the phenomenon in which the
focal point spreads to become a focal spot (Figure 4.23(b)) with the size of the spot decreasing with increasing NA.
Consequently, the intensity in the focal spot increases with increasing NA. The higher the NA, the greater the chances of
photodegrading the specimen. However, the spot never becomes a true point.

Figure 4.23 (a) In geometric optics, the focus is modelled as a point, but it is not physically possible to produce such a
point because it implies infinite intensity. (b) In wave optics, the focus is an extended region.

In a different type of microscope, molecules within a specimen are made to emit light through a mechanism called
fluorescence. By controlling the molecules emitting light, it has become possible to construct images with resolution much
finer than the Rayleigh criterion, thus circumventing the diffraction limit. The development of super-resolved fluorescence
microscopy led to the 2014 Nobel Prize in Chemistry.

In this Optical Resolution Model, two diffraction patterns for light through two circular apertures are shown side
by side in this simulation (https://openstaxcollege.org/l/21optresmodsim) by Fu-Kwun Hwang. Watch
the patterns merge as you decrease the aperture diameters.

4.6 | X-Ray Diffraction

Learning Objectives

By the end of this section, you will be able to:

• Describe interference and diffraction effects exhibited by X-rays in interaction with atomic-scale
structures

Since X-ray photons are very energetic, they have relatively short wavelengths, on the order of 10−8 m to 10−12 m.

Thus, typical X-ray photons act like rays when they encounter macroscopic objects, like teeth, and produce sharp shadows.
However, since atoms are on the order of 0.1 nm in size, X-rays can be used to detect the location, shape, and size of atoms
and molecules. The process is called X-ray diffraction, and it involves the interference of X-rays to produce patterns that
can be analyzed for information about the structures that scattered the X-rays.

Perhaps the most famous example of X-ray diffraction is the discovery of the double-helical structure of DNA in 1953 by an
international team of scientists working at England’s Cavendish Laboratory—American James Watson, Englishman Francis
Crick, and New Zealand-born Maurice Wilkins. Using X-ray diffraction data produced by Rosalind Franklin, they were
the first to model the double-helix structure of DNA that is so crucial to life. For this work, Watson, Crick, and Wilkins
were awarded the 1962 Nobel Prize in Physiology or Medicine. (There is some debate and controversy over the issue that
Rosalind Franklin was not included in the prize, although she died in 1958, before the prize was awarded.)

Figure 4.24 shows a diffraction pattern produced by the scattering of X-rays from a crystal. This process is known as X-ray
crystallography because of the information it can yield about crystal structure, and it was the type of data Rosalind Franklin
supplied to Watson and Crick for DNA. Not only do X-rays confirm the size and shape of atoms, they give information
about the atomic arrangements in materials. For example, more recent research in high-temperature superconductors
involves complex materials whose lattice arrangements are crucial to obtaining a superconducting material. These can be
studied using X-ray crystallography.
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Figure 4.24 X-ray diffraction from the crystal of a protein
(hen egg lysozyme) produced this interference pattern. Analysis
of the pattern yields information about the structure of the
protein. (credit: “Del45”/Wikimedia Commons)

Historically, the scattering of X-rays from crystals was used to prove that X-rays are energetic electromagnetic (EM) waves.
This was suspected from the time of the discovery of X-rays in 1895, but it was not until 1912 that the German Max von
Laue (1879–1960) convinced two of his colleagues to scatter X-rays from crystals. If a diffraction pattern is obtained, he
reasoned, then the X-rays must be waves, and their wavelength could be determined. (The spacing of atoms in various
crystals was reasonably well known at the time, based on good values for Avogadro’s number.) The experiments were
convincing, and the 1914 Nobel Prize in Physics was given to von Laue for his suggestion leading to the proof that X-rays
are EM waves. In 1915, the unique father-and-son team of Sir William Henry Bragg and his son Sir William Lawrence
Bragg were awarded a joint Nobel Prize for inventing the X-ray spectrometer and the then-new science of X-ray analysis.

In ways reminiscent of thin-film interference, we consider two plane waves at X-ray wavelengths, each one reflecting off
a different plane of atoms within a crystal’s lattice, as shown in Figure 4.25. From the geometry, the difference in path
lengths is 2d sin θ . Constructive interference results when this distance is an integer multiple of the wavelength. This

condition is captured by the Bragg equation,

(4.6)mλ = 2d sin θ, m = 1, 2, 3 ...

where m is a positive integer and d is the spacing between the planes. Following the Law of Reflection, both the incident
and reflected waves are described by the same angle, θ, but unlike the general practice in geometric optics, θ is measured

with respect to the surface itself, rather than the normal.
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Figure 4.25 X-ray diffraction with a crystal. Two incident waves reflect off two
planes of a crystal. The difference in path lengths is indicated by the dashed line.

Example 4.7

X-Ray Diffraction with Salt Crystals

Common table salt is composed mainly of NaCl crystals. In a NaCl crystal, there is a family of planes 0.252 nm
apart. If the first-order maximum is observed at an incidence angle of 18.1° , what is the wavelength of the X-ray

scattering from this crystal?

Strategy

Use the Bragg equation, Equation 4.6, mλ = 2d sin θ , to solve for θ .

Solution

For first-order, m = 1, and the plane spacing d is known. Solving the Bragg equation for wavelength yields

λ = 2d sin θ
m =

2⎛
⎝0.252 × 10−9 m⎞

⎠ sin (18.1°)
1 = 1.57 × 10−10 m, or 0.157 nm.

Significance

The determined wavelength fits within the X-ray region of the electromagnetic spectrum. Once again, the wave
nature of light makes itself prominent when the wavelength (λ = 0.157 nm) is comparable to the size of the

physical structures (d = 0.252 nm⎞
⎠ it interacts with.

Check Your Understanding For the experiment described in Example 4.7, what are the two other
angles where interference maxima may be observed? What limits the number of maxima?

Although Figure 4.25 depicts a crystal as a two-dimensional array of scattering centers for simplicity, real crystals are
structures in three dimensions. Scattering can occur simultaneously from different families of planes at different orientations
and spacing patterns known as called Bragg planes, as shown in Figure 4.26. The resulting interference pattern can be
quite complex.
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Figure 4.26 Because of the regularity that makes a crystal structure, one
crystal can have many families of planes within its geometry, each one giving
rise to X-ray diffraction.

4.7 | Holography

Learning Objectives

By the end of this section, you will be able to:

• Describe how a three-dimensional image is recorded as a hologram

• Describe how a three-dimensional image is formed from a hologram

A hologram, such as the one in Figure 4.27, is a true three-dimensional image recorded on film by lasers. Holograms
are used for amusement; decoration on novelty items and magazine covers; security on credit cards and driver’s licenses (a
laser and other equipment are needed to reproduce them); and for serious three-dimensional information storage. You can
see that a hologram is a true three-dimensional image because objects change relative position in the image when viewed
from different angles.

Figure 4.27 Credit cards commonly have holograms for
logos, making them difficult to reproduce. (credit: Dominic
Alves)

The name hologram means “entire picture” (from the Greek holo, as in holistic) because the image is three-dimensional.
Holography is the process of producing holograms and, although they are recorded on photographic film, the process is
quite different from normal photography. Holography uses light interference or wave optics, whereas normal photography
uses geometric optics. Figure 4.28 shows one method of producing a hologram. Coherent light from a laser is split by
a mirror, with part of the light illuminating the object. The remainder, called the reference beam, shines directly on a
piece of film. Light scattered from the object interferes with the reference beam, producing constructive and destructive
interference. As a result, the exposed film looks foggy, but close examination reveals a complicated interference pattern
stored on it. Where the interference was constructive, the film (a negative actually) is darkened. Holography is sometimes
called lens-less photography, because it uses the wave characteristics of light, as contrasted to normal photography, which
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uses geometric optics and requires lenses.

Figure 4.28 Production of a hologram. Single-wavelength
coherent light from a laser produces a well-defined interference
pattern on a piece of film. The laser beam is split by a partially
silvered mirror, with part of the light illuminating the object and
the remainder shining directly on the film. (credit: modification
of work by Mariana Ruiz Villarreal)

Light falling on a hologram can form a three-dimensional image of the original object. The process is complicated in detail,
but the basics can be understood, as shown in Figure 4.29, in which a laser of the same type that exposed the film is now
used to illuminate it. The myriad tiny exposed regions of the film are dark and block the light, whereas less exposed regions
allow light to pass. The film thus acts much like a collection of diffraction gratings with various spacing patterns. Light
passing through the hologram is diffracted in various directions, producing both real and virtual images of the object used
to expose the film. The interference pattern is the same as that produced by the object. Moving your eye to various places in
the interference pattern gives you different perspectives, just as looking directly at the object would. The image thus looks
like the object and is three dimensional like the object.

Figure 4.29 A transmission hologram is one that produces real and
virtual images when a laser of the same type as that which exposed the
hologram is passed through it. Diffraction from various parts of the film
produces the same interference pattern that was produced by the object
that was used to expose it. (credit: modification of work by Mariana
Ruiz Villarreal)

The hologram illustrated in Figure 4.29 is a transmission hologram. Holograms that are viewed with reflected light, such
as the white light holograms on credit cards, are reflection holograms and are more common. White light holograms often
appear a little blurry with rainbow edges, because the diffraction patterns of various colors of light are at slightly different
locations due to their different wavelengths. Further uses of holography include all types of three-dimensional information
storage, such as of statues in museums, engineering studies of structures, and images of human organs.

Invented in the late 1940s by Dennis Gabor (1900–1970), who won the 1971 Nobel Prize in Physics for his work,
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holography became far more practical with the development of the laser. Since lasers produce coherent single-wavelength
light, their interference patterns are more pronounced. The precision is so great that it is even possible to record numerous
holograms on a single piece of film by just changing the angle of the film for each successive image. This is how the
holograms that move as you walk by them are produced—a kind of lens-less movie.

In a similar way, in the medical field, holograms have allowed complete three-dimensional holographic displays of objects
from a stack of images. Storing these images for future use is relatively easy. With the use of an endoscope, high-resolution,
three-dimensional holographic images of internal organs and tissues can be made.
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Bragg planes

destructive interference for a single slit

diffraction

diffraction grating

diffraction limit

hologram

holography

missing order

Rayleigh criterion

resolution

two-slit diffraction pattern

width of the central peak

X-ray diffraction

CHAPTER 4 REVIEW

KEY TERMS
families of planes within crystals that can give rise to X-ray diffraction

occurs when the width of the slit is comparable to the wavelength of light
illuminating it

bending of a wave around the edges of an opening or an obstacle

large number of evenly spaced parallel slits

fundamental limit to resolution due to diffraction

three-dimensional image recorded on film by lasers; the word hologram means entire picture (from the Greek
word holo, as in holistic)

process of producing holograms with the use of lasers

interference maximum that is not seen because it coincides with a diffraction minimum

two images are just-resolvable when the center of the diffraction pattern of one is directly over the
first minimum of the diffraction pattern of the other

ability, or limit thereof, to distinguish small details in images

diffraction pattern of two slits of width D that are separated by a distance d is the
interference pattern of two point sources separated by d multiplied by the diffraction pattern of a slit of width D

angle between the minimum for m = 1 and m = −1

technique that provides the detailed information about crystallographic structure of natural and
manufactured materials

KEY EQUATIONS
Destructive interference for a single slit D sin θ = mλ for m = ± 1, ± 2, ± 3, ...

Half phase angle β = ϕ
2 = πD sin θ

λ

Field amplitude in the diffraction pattern E = NΔE0
sin β

β

Intensity in the diffraction pattern
I = I0

⎛
⎝
sin β

β
⎞
⎠

2

Rayleigh criterion for circular apertures θ = 1.22 λ
D

Bragg equation mλ = 2d sin θ, m = 1, 2, 3...

SUMMARY

4.1 Single-Slit Diffraction

• Diffraction can send a wave around the edges of an opening or other obstacle.

• A single slit produces an interference pattern characterized by a broad central maximum with narrower and dimmer
maxima to the sides.
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4.2 Intensity in Single-Slit Diffraction

• The intensity pattern for diffraction due to a single slit can be calculated using phasors as

I = I0
⎛
⎝
sin β

β
⎞
⎠

2
,

where β = ϕ
2 = πD sin θ

λ , D is the slit width, λ is the wavelength, and θ is the angle from the central peak.

4.3 Double-Slit Diffraction

• With real slits with finite widths, the effects of interference and diffraction operate simultaneously to form a
complicated intensity pattern.

• Relative intensities of interference fringes within a diffraction pattern can be determined.

• Missing orders occur when an interference maximum and a diffraction minimum are located together.

4.4 Diffraction Gratings

• A diffraction grating consists of a large number of evenly spaced parallel slits that produce an interference pattern
similar to but sharper than that of a double slit.

• Constructive interference occurs when d sin θ = mλ for m = 0, ± 1, ± 2, ..., where d is the distance between

the slits, θ is the angle relative to the incident direction, and m is the order of the interference.

4.5 Circular Apertures and Resolution

• Diffraction limits resolution.

• The Rayleigh criterion states that two images are just resolvable when the center of the diffraction pattern of one is
directly over the first minimum of the diffraction pattern of the other.

4.6 X-Ray Diffraction

• X-rays are relatively short-wavelength EM radiation and can exhibit wave characteristics such as interference when
interacting with correspondingly small objects.

4.7 Holography

• Holography is a technique based on wave interference to record and form three-dimensional images.

• Lasers offer a practical way to produce sharp holographic images because of their monochromatic and coherent
light for pronounced interference patterns.

CONCEPTUAL QUESTIONS

4.1 Single-Slit Diffraction

1. As the width of the slit producing a single-slit
diffraction pattern is reduced, how will the diffraction
pattern produced change?

2. Compare interference and diffraction.

3. If you and a friend are on opposite sides of a hill,
you can communicate with walkie-talkies but not with
flashlights. Explain.

4. What happens to the diffraction pattern of a single slit
when the entire optical apparatus is immersed in water?

5. In our study of diffraction by a single slit, we assume
that the length of the slit is much larger than the width.
What happens to the diffraction pattern if these two
dimensions were comparable?

6. A rectangular slit is twice as wide as it is high. Is the
central diffraction peak wider in the vertical direction or in
the horizontal direction?
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4.2 Intensity in Single-Slit Diffraction

7. In Equation 4.4, the parameter β looks like an angle

but is not an angle that you can measure with a protractor
in the physical world. Explain what β represents.

4.3 Double-Slit Diffraction

8. Shown below is the central part of the interference
pattern for a pure wavelength of red light projected onto a
double slit. The pattern is actually a combination of single-
and double-slit interference. Note that the bright spots are
evenly spaced. Is this a double- or single-slit characteristic?
Note that some of the bright spots are dim on either side
of the center. Is this a single- or double-slit characteristic?
Which is smaller, the slit width or the separation between
slits? Explain your responses.

(credit: PASCO)

4.5 Circular Apertures and Resolution

9. Is higher resolution obtained in a microscope with red
or blue light? Explain your answer.

10. The resolving power of refracting telescope increases
with the size of its objective lens. What other advantage is

gained with a larger lens?

11. The distance between atoms in a molecule is about

10−8 cm . Can visible light be used to “see” molecules?

12. A beam of light always spreads out. Why can a beam
not be created with parallel rays to prevent spreading? Why
can lenses, mirrors, or apertures not be used to correct the
spreading?

4.6 X-Ray Diffraction

13. Crystal lattices can be examined with X-rays but not
UV. Why?

4.7 Holography

14. How can you tell that a hologram is a true three-
dimensional image and that those in three-dimensional
movies are not?

15. If a hologram is recorded using monochromatic light
at one wavelength but its image is viewed at another
wavelength, say 10% shorter, what will you see? What

if it is viewed using light of exactly half the original
wavelength?

16. What image will one see if a hologram is recorded
using monochromatic light but its image is viewed in white
light? Explain.

PROBLEMS

4.1 Single-Slit Diffraction

17. (a) At what angle is the first minimum for 550-nm
light falling on a single slit of width 1.00µm ? (b) Will

there be a second minimum?

18. (a) Calculate the angle at which a 2.00-µm -wide

slit produces its first minimum for 410-nm violet light. (b)
Where is the first minimum for 700-nm red light?

19. (a) How wide is a single slit that produces its first
minimum for 633-nm light at an angle of 28.0° ? (b) At

what angle will the second minimum be?

20. (a) What is the width of a single slit that produces
its first minimum at 60.0° for 600-nm light? (b) Find the

wavelength of light that has its first minimum at 62.0° .

21. Find the wavelength of light that has its third
minimum at an angle of 48.6° when it falls on a single slit

of width 3.00µm .

22. (a) Sodium vapor light averaging 589 nm in
wavelength falls on a single slit of width 7.50µm . At what

angle does it produces its second minimum? (b) What is the
highest-order minimum produced?

23. Consider a single-slit diffraction pattern for
λ = 589 nm , projected on a screen that is 1.00 m from

a slit of width 0.25 mm. How far from the center of the
pattern are the centers of the first and second dark fringes?

24. (a) Find the angle between the first minima for the
two sodium vapor lines, which have wavelengths of 589.1
and 589.6 nm, when they fall upon a single slit of width
2.00µm . (b) What is the distance between these minima

176 Chapter 4 | Diffraction

This OpenStax book is available for free at http://cnx.org/content/col12067/1.9



if the diffraction pattern falls on a screen 1.00 m from the
slit? (c) Discuss the ease or difficulty of measuring such a
distance.

25. (a) What is the minimum width of a single slit (in
multiples of λ ) that will produce a first minimum for

a wavelength λ ? (b) What is its minimum width if it

produces 50 minima? (c) 1000 minima?

26. (a) If a single slit produces a first minimum at 14.5°,
at what angle is the second-order minimum? (b) What is
the angle of the third-order minimum? (c) Is there a fourth-
order minimum? (d) Use your answers to illustrate how the
angular width of the central maximum is about twice the
angular width of the next maximum (which is the angle
between the first and second minima).

27. If the separation between the first and the second
minima of a single-slit diffraction pattern is 6.0 mm, what
is the distance between the screen and the slit? The light
wavelength is 500 nm and the slit width is 0.16 mm.

28. A water break at the entrance to a harbor consists of
a rock barrier with a 50.0-m-wide opening. Ocean waves
of 20.0-m wavelength approach the opening straight on. At
what angles to the incident direction are the boats inside the
harbor most protected against wave action?

29. An aircraft maintenance technician walks past a tall
hangar door that acts like a single slit for sound entering
the hangar. Outside the door, on a line perpendicular to the
opening in the door, a jet engine makes a 600-Hz sound.
At what angle with the door will the technician observe the
first minimum in sound intensity if the vertical opening is
0.800 m wide and the speed of sound is 340 m/s?

4.2 Intensity in Single-Slit Diffraction

30. A single slit of width 3.0 µm is illuminated by a

sodium yellow light of wavelength 589 nm. Find the
intensity at a 15° angle to the axis in terms of the intensity

of the central maximum.

31. A single slit of width 0.1 mm is illuminated by a
mercury light of wavelength 576 nm. Find the intensity at a
10° angle to the axis in terms of the intensity of the central

maximum.

32. The width of the central peak in a single-slit
diffraction pattern is 5.0 mm. The wavelength of the light
is 600 nm, and the screen is 2.0 m from the slit. (a) What is
the width of the slit? (b) Determine the ratio of the intensity
at 4.5 mm from the center of the pattern to the intensity at
the center.

33. Consider the single-slit diffraction pattern for
λ = 600 nm , D = 0.025 mm , and x = 2.0 m . Find the

intensity in terms of Io at θ = 0.5° , 1.0° , 1.5° , 3.0° ,

and 10.0° .

4.3 Double-Slit Diffraction

34. Two slits of width 2 µm, each in an opaque material,

are separated by a center-to-center distance of 6 µm. A

monochromatic light of wavelength 450 nm is incident
on the double-slit. One finds a combined interference and
diffraction pattern on the screen.

(a) How many peaks of the interference will be observed in
the central maximum of the diffraction pattern?

(b) How many peaks of the interference will be observed
if the slit width is doubled while keeping the distance
between the slits same?

(c) How many peaks of interference will be observed if the
slits are separated by twice the distance, that is, 12 µm,
while keeping the widths of the slits same?

(d) What will happen in (a) if instead of 450-nm light
another light of wavelength 680 nm is used?

(e) What is the value of the ratio of the intensity of the
central peak to the intensity of the next bright peak in (a)?

(f) Does this ratio depend on the wavelength of the light?

(g) Does this ratio depend on the width or separation of the
slits?

35. A double slit produces a diffraction pattern that is a
combination of single- and double-slit interference. Find
the ratio of the width of the slits to the separation between
them, if the first minimum of the single-slit pattern falls
on the fifth maximum of the double-slit pattern. (This will
greatly reduce the intensity of the fifth maximum.)

36. For a double-slit configuration where the slit
separation is four times the slit width, how many
interference fringes lie in the central peak of the diffraction
pattern?

37. Light of wavelength 500 nm falls normally on 50

slits that are 2.5 × 10−3 mm wide and spaced

5.0 × 10−3 mm apart. How many interference fringes lie

in the central peak of the diffraction pattern?

38. A monochromatic light of wavelength 589 nm
incident on a double slit with slit width 2.5 µm and

unknown separation results in a diffraction pattern
containing nine interference peaks inside the central
maximum. Find the separation of the slits.
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39. When a monochromatic light of wavelength 430 nm
incident on a double slit of slit separation 5 µm, there are

11 interference fringes in its central maximum. How many
interference fringes will be in the central maximum of a
light of wavelength 632.8 nm for the same double slit?

40. Determine the intensities of two interference peaks
other than the central peak in the central maximum of
the diffraction, if possible, when a light of wavelength
628 nm is incident on a double slit of width 500 nm and
separation 1500 nm. Use the intensity of the central spot to

be 1 mW/cm2 .

4.4 Diffraction Gratings

41. A diffraction grating has 2000 lines per centimeter. At
what angle will the first-order maximum be for 520-nm-
wavelength green light?

42. Find the angle for the third-order maximum for
580-nm-wavelength yellow light falling on a difraction
grating having 1500 lines per centimeter.

43. How many lines per centimeter are there on a
diffraction grating that gives a first-order maximum for
470-nm blue light at an angle of 25.0° ?

44. What is the distance between lines on a diffraction
grating that produces a second-order maximum for 760-nm
red light at an angle of 60.0° ?

45. Calculate the wavelength of light that has its second-
order maximum at 45.0° when falling on a diffraction

grating that has 5000 lines per centimeter.

46. An electric current through hydrogen gas produces
several distinct wavelengths of visible light. What are the
wavelengths of the hydrogen spectrum, if they form first-
order maxima at angles 24.2°, 25.7°, 29.1°, and 41.0°
when projected on a diffraction grating having 10,000 lines
per centimeter?

47. (a) What do the four angles in the preceding problem
become if a 5000-line per centimeter diffraction grating
is used? (b) Using this grating, what would the angles be
for the second-order maxima? (c) Discuss the relationship
between integral reductions in lines per centimeter and the
new angles of various order maxima.

48. What is the spacing between structures in a feather that
acts as a reflection grating, giving that they produce a first-
order maximum for 525-nm light at a 30.0° angle?

49. An opal such as that shown in Figure 4.15 acts like

a reflection grating with rows separated by about 8 µm. If

the opal is illuminated normally, (a) at what angle will red
light be seen and (b) at what angle will blue light be seen?

50. At what angle does a diffraction grating produce a
second-order maximum for light having a first-order
maximum at 20.0° ?

51. (a) Find the maximum number of lines per centimeter
a diffraction grating can have and produce a maximum for
the smallest wavelength of visible light. (b) Would such a
grating be useful for ultraviolet spectra? (c) For infrared
spectra?

52. (a) Show that a 30,000 line per centimeter grating
will not produce a maximum for visible light. (b) What is
the longest wavelength for which it does produce a first-
order maximum? (c) What is the greatest number of line
per centimeter a diffraction grating can have and produce a
complete second-order spectrum for visible light?

53. The analysis shown below also applies to diffraction
gratings with lines separated by a distance d. What is the
distance between fringes produced by a diffraction grating
having 125 lines per centimeter for 600-nm light, if the
screen is 1.50 m away? (Hint: The distance between
adjacent fringes is Δy = xλ/d, assuming the slit

separation d is comparable to λ. )

4.5 Circular Apertures and Resolution

54. The 305-m-diameter Arecibo radio telescope pictured
in Figure 4.20 detects radio waves with a 4.00-cm average
wavelength. (a) What is the angle between two just-
resolvable point sources for this telescope? (b) How close
together could these point sources be at the 2 million light-
year distance of the Andromeda Galaxy?

55. Assuming the angular resolution found for the Hubble
Telescope in Example 4.6, what is the smallest detail that
could be observed on the moon?
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56. Diffraction spreading for a flashlight is insignificant
compared with other limitations in its optics, such as
spherical aberrations in its mirror. To show this, calculate
the minimum angular spreading of a flashlight beam that is
originally 5.00 cm in diameter with an average wavelength
of 600 nm.

57. (a) What is the minimum angular spread of a 633-nm
wavelength He-Ne laser beam that is originally 1.00 mm in
diameter? (b) If this laser is aimed at a mountain cliff 15.0
km away, how big will the illuminated spot be? (c) How
big a spot would be illuminated on the moon, neglecting
atmospheric effects? (This might be done to hit a corner
reflector to measure the round-trip time and, hence,
distance.)

58. A telescope can be used to enlarge the diameter of a
laser beam and limit diffraction spreading. The laser beam
is sent through the telescope in opposite the normal
direction and can then be projected onto a satellite or the
moon. (a) If this is done with the Mount Wilson telescope,
producing a 2.54-m-diameter beam of 633-nm light, what
is the minimum angular spread of the beam? (b) Neglecting
atmospheric effects, what is the size of the spot this beam
would make on the moon, assuming a lunar distance of

3.84 × 108 m ?

59. The limit to the eye’s acuity is actually related to
diffraction by the pupil. (a) What is the angle between
two just-resolvable points of light for a 3.00-mm-diameter
pupil, assuming an average wavelength of 550 nm? (b)
Take your result to be the practical limit for the eye. What
is the greatest possible distance a car can be from you if you
can resolve its two headlights, given they are 1.30 m apart?
(c) What is the distance between two just-resolvable points
held at an arm’s length (0.800 m) from your eye? (d) How
does your answer to (c) compare to details you normally
observe in everyday circumstances?

60. What is the minimum diameter mirror on a telescope
that would allow you to see details as small as 5.00 km
on the moon some 384,000 km away? Assume an average
wavelength of 550 nm for the light received.

61. Find the radius of a star’s image on the retina of an
eye if its pupil is open to 0.65 cm and the distance from the
pupil to the retina is 2.8 cm. Assume λ = 550 nm .

62. (a) The dwarf planet Pluto and its moon, Charon, are
separated by 19,600 km. Neglecting atmospheric effects,
should the 5.08-m-diameter Palomar Mountain telescope
be able to resolve these bodies when they are

4.50 × 109 km from Earth? Assume an average

wavelength of 550 nm. (b) In actuality, it is just barely
possible to discern that Pluto and Charon are separate
bodies using a ground-based telescope. What are the

reasons for this?

63. A spy satellite orbits Earth at a height of 180 km. What
is the minimum diameter of the objective lens in a telescope
that must be used to resolve columns of troops marching
2.0 m apart? Assume λ = 550 nm.

64. What is the minimum angular separation of two stars
that are just-resolvable by the 8.1-m Gemini South
telescope, if atmospheric effects do not limit resolution?
Use 550 nm for the wavelength of the light from the stars.

65. The headlights of a car are 1.3 m apart. What is the
maximum distance at which the eye can resolve these two
headlights? Take the pupil diameter to be 0.40 cm.

66. When dots are placed on a page from a laser printer,
they must be close enough so that you do not see the
individual dots of ink. To do this, the separation of the dots
must be less than Raleigh’s criterion. Take the pupil of the
eye to be 3.0 mm and the distance from the paper to the eye
of 35 cm; find the minimum separation of two dots such
that they cannot be resolved. How many dots per inch (dpi)
does this correspond to?

67. Suppose you are looking down at a highway from a
jetliner flying at an altitude of 6.0 km. How far apart must
two cars be if you are able to distinguish them? Assume
that λ = 550 nm and that the diameter of your pupils is 4.0

mm.

68. Can an astronaut orbiting Earth in a satellite at a
distance of 180 km from the surface distinguish two
skyscrapers that are 20 m apart? Assume that the pupils of
the astronaut’s eyes have a diameter of 5.0 mm and that
most of the light is centered around 500 nm.

69. The characters of a stadium scoreboard are formed
with closely spaced lightbulbs that radiate primarily yellow
light. (Use λ = 600 nm. ) How closely must the bulbs be

spaced so that an observer 80 m away sees a display of
continuous lines rather than the individual bulbs? Assume
that the pupil of the observer’s eye has a diameter of 5.0
mm.

70. If a microscope can accept light from objects at angles
as large as α = 70° , what is the smallest structure that can

be resolved when illuminated with light of wavelength 500
nm and (a) the specimen is in air? (b) When the specimen
is immersed in oil, with index of refraction of 1.52?

71. A camera uses a lens with aperture 2.0 cm. What is
the angular resolution of a photograph taken at 700 nm
wavelength? Can it resolve the millimeter markings of a
ruler placed 35 m away?
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4.6 X-Ray Diffraction

72. X-rays of wavelength 0.103 nm reflects off a crystal
and a second-order maximum is recorded at a Bragg angle
of 25.5° . What is the spacing between the scattering

planes in this crystal?

73. A first-order Bragg reflection maximum is observed
when a monochromatic X-ray falls on a crystal at a 32.3°
angle to a reflecting plane. What is the wavelength of this
X-ray?

74. An X-ray scattering experiment is performed on a
crystal whose atoms form planes separated by 0.440 nm.
Using an X-ray source of wavelength 0.548 nm, what is
the angle (with respect to the planes in question) at which
the experimenter needs to illuminate the crystal in order to
observe a first-order maximum?

75. The structure of the NaCl crystal forms reflecting
planes 0.541 nm apart. What is the smallest angle,
measured from these planes, at which X-ray diffraction can

be observed, if X-rays of wavelength 0.085 nm are used?

76. On a certain crystal, a first-order X-ray diffraction
maximum is observed at an angle of 27.1° relative to its

surface, using an X-ray source of unknown wavelength.
Additionally, when illuminated with a different, this time of
known wavelength 0.137 nm, a second-order maximum is
detected at 37.3°. Determine (a) the spacing between the

reflecting planes, and (b) the unknown wavelength.

77. Calcite crystals contain scattering planes separated by
0.30 nm. What is the angular separation between first and
second-order diffraction maxima when X-rays of 0.130 nm
wavelength are used?

78. The first-order Bragg angle for a certain crystal is
12.1° . What is the second-order angle?

ADDITIONAL PROBLEMS

79. White light falls on two narrow slits separated by
0.40 mm. The interference pattern is observed on a screen
3.0 m away. (a) What is the separation between the first
maxima for red light (λ = 700 nm⎞

⎠ and violet light

(λ = 400 nm⎞
⎠? (b) At what point nearest the central

maximum will a maximum for yellow light (λ = 600 nm⎞
⎠

coincide with a maximum for violet light? Identify the
order for each maximum.

80. Microwaves of wavelength 10.0 mm fall normally on
a metal plate that contains a slit 25 mm wide. (a) Where are
the first minima of the diffraction pattern? (b) Would there
be minima if the wavelength were 30.0 mm?

81. Quasars, or quasi-stellar radio sources, are
astronomical objects discovered in 1960. They are distant
but strong emitters of radio waves with angular size so
small, they were originally unresolved, the same as stars.
The quasar 3C405 is actually two discrete radio sources
that subtend an angle of 82 arcsec. If this object is studied
using radio emissions at a frequency of 410 MHz, what is
the minimum diameter of a radio telescope that can resolve
the two sources?

82. Two slits each of width 1800 nm and separated by
the center-to-center distance of 1200 nm are illuminated
by plane waves from a krypton ion laser-emitting at
wavelength 461.9 nm. Find the number of interference
peaks in the central diffraction peak.

83. A microwave of an unknown wavelength is incident
on a single slit of width 6 cm. The angular width of the
central peak is found to be 25° . Find the wavelength.

84. Red light (wavelength 632.8 nm in air) from a Helium-
Neon laser is incident on a single slit of width 0.05 mm.
The entire apparatus is immersed in water of refractive
index 1.333. Determine the angular width of the central
peak.

85. A light ray of wavelength 461.9 nm emerges from
a 2-mm circular aperture of a krypton ion laser. Due to
diffraction, the beam expands as it moves out. How large is
the central bright spot at (a) 1 m, (b) 1 km, (c) 1000 km,
and (d) at the surface of the moon at a distance of 400,000
km from Earth.

86. How far apart must two objects be on the moon to
be distinguishable by eye if only the diffraction effects of
the eye’s pupil limit the resolution? Assume 550 nm for
the wavelength of light, the pupil diameter 5.0 mm, and
400,000 km for the distance to the moon.

87. How far apart must two objects be on the moon to be
resolvable by the 8.1-m-diameter Gemini North telescope
at Mauna Kea, Hawaii, if only the diffraction effects of the
telescope aperture limit the resolution? Assume 550 nm for
the wavelength of light and 400,000 km for the distance to
the moon.
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88. A spy satellite is reputed to be able to resolve objects
10. cm apart while operating 197 km above the surface of
Earth. What is the diameter of the aperture of the telescope
if the resolution is only limited by the diffraction effects?
Use 550 nm for light.

89. Monochromatic light of wavelength 530 nm passes
through a horizontal single slit of width 1.5 µm in an

opaque plate. A screen of dimensions 2.0 m × 2.0 m is

1.2 m away from the slit. (a) Which way is the diffraction
pattern spread out on the screen? (b) What are the angles
of the minima with respect to the center? (c) What are the
angles of the maxima? (d) How wide is the central bright
fringe on the screen? (e) How wide is the next bright fringe
on the screen?

90. A monochromatic light of unknown wavelength is
incident on a slit of width 20 µm . A diffraction pattern is

seen at a screen 2.5 m away where the central maximum is
spread over a distance of 10.0 cm. Find the wavelength.

91. A source of light having two wavelengths 550 nm and
600 nm of equal intensity is incident on a slit of width
1.8 µm . Find the separation of the m = 1 bright spots of

the two wavelengths on a screen 30.0 cm away.

92. A single slit of width 2100 nm is illuminated normally
by a wave of wavelength 632.8 nm. Find the phase
difference between waves from the top and one third from
the bottom of the slit to a point on a screen at a horizontal
distance of 2.0 m and vertical distance of 10.0 cm from the
center.

93. A single slit of width 3.0 µm is illuminated by a

sodium yellow light of wavelength 589 nm. Find the
intensity at a 15° angle to the axis in terms of the intensity

of the central maximum.

94. A single slit of width 0.10 mm is illuminated by a
mercury lamp of wavelength 576 nm. Find the intensity at a
10° angle to the axis in terms of the intensity of the central

maximum.

95. A diffraction grating produces a second maximum that
is 89.7 cm from the central maximum on a screen 2.0 m
away. If the grating has 600 lines per centimeter, what is
the wavelength of the light that produces the diffraction
pattern?

96. A grating with 4000 lines per centimeter is used to
diffract light that contains all wavelengths between 400 and
650 nm. How wide is the first-order spectrum on a screen
3.0 m from the grating?

97. A diffraction grating with 2000 lines per centimeter is

used to measure the wavelengths emitted by a hydrogen gas
discharge tube. (a) At what angles will you find the maxima
of the two first-order blue lines of wavelengths 410 and
434 nm? (b) The maxima of two other first-order lines are
found at θ1 = 0.097 rad and θ2 = 0.132 rad . What are

the wavelengths of these lines?

98. For white light (400 nm < λ< 700 nm) falling

normally on a diffraction grating, show that the second
and third-order spectra overlap no matter what the grating
constant d is.

99. How many complete orders of the visible spectrum
(400 nm < λ< 700 nm) can be produced with a diffraction

grating that contains 5000 lines per centimeter?

100. Two lamps producing light of wavelength 589 nm are
fixed 1.0 m apart on a wooden plank. What is the maximum
distance an observer can be and still resolve the lamps as
two separate sources of light, if the resolution is affected
solely by the diffraction of light entering the eye? Assume
light enters the eye through a pupil of diameter 4.5 mm.

101. On a bright clear day, you are at the top of a mountain
and looking at a city 12 km away. There are two tall towers
20.0 m apart in the city. Can your eye resolve the two
towers if the diameter of the pupil is 4.0 mm? If not,
what should be the minimum magnification power of the
telescope needed to resolve the two towers? In your
calculations use 550 nm for the wavelength of the light.

102. Radio telescopes are telescopes used for the detection
of radio emission from space. Because radio waves have
much longer wavelengths than visible light, the diameter
of a radio telescope must be very large to provide good
resolution. For example, the radio telescope in Penticton,
BC in Canada, has a diameter of 26 m and can be operated
at frequencies as high as 6.6 GHz. (a) What is the
wavelength corresponding to this frequency? (b) What is
the angular separation of two radio sources that can be
resolved by this telescope? (c) Compare the telescope’s
resolution with the angular size of the moon.
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Figure 4.30 (credit: modification of work by Jason
Nishiyama)

103. Calculate the wavelength of light that produces its
first minimum at an angle of 36.9° when falling on a

single slit of width 1.00 µm .

104. (a) Find the angle of the third diffraction minimum
for 633-nm light falling on a slit of width 20.0 µm . (b)

What slit width would place this minimum at 85.0° ?

105. As an example of diffraction by apertures of
everyday dimensions, consider a doorway of width 1.0 m.
(a) What is the angular position of the first minimum in
the diffraction pattern of 600-nm light? (b) Repeat this
calculation for a musical note of frequency 440 Hz (A
above middle C). Take the speed of sound to be 343 m/s.

106. What are the angular positions of the first and second
minima in a diffraction pattern produced by a slit of width
0.20 mm that is illuminated by 400 nm light? What is the
angular width of the central peak?

107. How far would you place a screen from the slit of the
previous problem so that the second minimum is a distance
of 2.5 mm from the center of the diffraction pattern?

108. How narrow is a slit that produces a diffraction
pattern on a screen 1.8 m away whose central peak is 1.0 m
wide? Assume λ = 589 nm .

109. Suppose that the central peak of a single-slit
diffraction pattern is so wide that the first minima can be

assumed to occur at angular positions of ±90° . For this

case, what is the ratio of the slit width to the wavelength of
the light?

110. The central diffraction peak of the double-slit
interference pattern contains exactly nine fringes. What is
the ratio of the slit separation to the slit width?

111. Determine the intensities of three interference peaks
other than the central peak in the central maximum of the
diffraction, if possible, when a light of wavelength 500 nm
is incident normally on a double slit of width 1000 nm and
separation 1500 nm. Use the intensity of the central spot to

be 1 mW/cm2 .

112. The yellow light from a sodium vapor lamp seems
to be of pure wavelength, but it produces two first-order
maxima at 36.093° and 36.129° when projected on a

10,000 line per centimeter diffraction grating. What are the
two wavelengths to an accuracy of 0.1 nm?

113. Structures on a bird feather act like a reflection
grating having 8000 lines per centimeter. What is the angle
of the first-order maximum for 600-nm light?

114. If a diffraction grating produces a first-order
maximum for the shortest wavelength of visible light at
30.0° , at what angle will the first-order maximum be for

the largest wavelength of visible light?

115. (a) What visible wavelength has its fourth-order
maximum at an angle of 25.0° when projected on a

25,000-line per centimeter diffraction grating? (b) What is
unreasonable about this result? (c) Which assumptions are
unreasonable or inconsistent?

116. Consider a spectrometer based on a diffraction
grating. Construct a problem in which you calculate the
distance between two wavelengths of electromagnetic
radiation in your spectrometer. Among the things to be
considered are the wavelengths you wish to be able to
distinguish, the number of lines per meter on the diffraction
grating, and the distance from the grating to the screen or
detector. Discuss the practicality of the device in terms of
being able to discern between wavelengths of interest.

117. An amateur astronomer wants to build a telescope
with a diffraction limit that will allow him to see if there are
people on the moons of Jupiter. (a) What diameter mirror is
needed to be able to see 1.00-m detail on a Jovian moon at

a distance of 7.50 × 108 km from Earth? The wavelength

of light averages 600 nm. (b) What is unreasonable about
this result? (c) Which assumptions are unreasonable or
inconsistent?

182 Chapter 4 | Diffraction

This OpenStax book is available for free at http://cnx.org/content/col12067/1.9



CHALLENGE PROBLEMS

118. Blue light of wavelength 450 nm falls on a slit of
width 0.25 mm. A converging lens of focal length 20 cm is
placed behind the slit and focuses the diffraction pattern on
a screen. (a) How far is the screen from the lens? (b) What
is the distance between the first and the third minima of the
diffraction pattern?

119. (a) Assume that the maxima are halfway between
the minima of a single-slit diffraction pattern. The use the
diameter and circumference of the phasor diagram, as
described in Intensity in Single-Slit Diffraction, to
determine the intensities of the third and fourth maxima in
terms of the intensity of the central maximum. (b) Do the
same calculation, using Equation 4.4.

120. (a) By differentiating Equation 4.4, show that the
higher-order maxima of the single-slit diffraction pattern
occur at values of β that satisfy tan β = β . (b) Plot

y = tan β and y = β versus β and find the intersections

of these two curves. What information do they give you
about the locations of the maxima? (c) Convince yourself

that these points do not appear exactly at β = ⎛
⎝n + 1

2
⎞
⎠π,

where n = 0, 1, 2, …, but are quite close to these

values.

121. What is the maximum number of lines per centimeter
a diffraction grating can have and produce a complete first-
order spectrum for visible light?

122. Show that a diffraction grating cannot produce a
second-order maximum for a given wavelength of light
unless the first-order maximum is at an angle less than
30.0° .

123. A He-Ne laser beam is reflected from the surface of a
CD onto a wall. The brightest spot is the reflected beam at
an angle equal to the angle of incidence. However, fringes
are also observed. If the wall is 1.50 m from the CD, and
the first fringe is 0.600 m from the central maximum, what
is the spacing of grooves on the CD?

124. Objects viewed through a microscope are placed very
close to the focal point of the objective lens. Show that the
minimum separation x of two objects resolvable through

the microscope is given by x = 1.22λ f0
D ,

where f0 is the focal length and D is the diameter of the

objective lens as shown below.
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